## KONUR ERU LÍKA Í SJÁVARÚTVEGI

### Comprehending the capelin regime shift Breytingar á útbreiðslu loðnunnar

Kristinn Guðnason, Warsha Singh

Rannsókna- og ráðgjafarstofnun hafs og vatna





Íslandsbanki









SJÁVARÚTVEGS RÁÐSTEFNAN 2022

### **Regime shift in capelin distribution**

• The nursery grounds of capelin shifted from north of Iceland to East coast of Greenland in 2000s (*Carscadden et al. 2013*). This is also evident from acoustic survey data.







Can these changes be related to changes in the physical environment?



### **Regime shift in capelin distribution**





### Autumn survey time series



#### **Environmental data**



- Sea surface temperature
- Salinity
- Currents
- Bathymetry









### Life history traits

- Mean length- and weight- at age as well as length at maturity have increased over time in response to changes observed in the stock size indicating density-dependent effects





## Capelin diet in the earlier and new feeding area







- $\rightarrow$  Higher contribution of amphipods in the new feeding area
- $\rightarrow$  Reflects different prey availability but food quality is similar
- $\rightarrow~$  Immature capelin feed on copepods and mature capelin feed on krill
- $\rightarrow$  A shift from old summer feeding area where copepods remained important for older fish



# Detecting spawning events and estimating connectivity



• Catches of pre-spawning capelin from commercial samples





### Drift trajectories from different spawning grounds

- Drift simulated at different depths, as well as with diurnal vertical migration
- Varied hatching times simulated
- Big variation in connectivity to Greenland depending on time of spawning and spawning location



-25

-20

-15

-35

Release day /5: 2018-03-19



GEOMA



### Conclusion



- Changes in the physical environment can explain the past and present changes in the distribution
- Juvenile nursery connectivity is affected by spawning location and time of hatching
- Findings were presented at the capelin symposium in Bergen (Oct 2022)
  - https://capelin2022.imr.no/
  - Publications planned for special issue of ICES journal



- Developing a visualization tool as part of the Horizon 2020 project ECOTIP
  - <u>https://ecotip-arctic.eu/</u>
  - https://shiny.hafogvatn.is/31-cap-dashboard/





### **Currents affecting larval drift**





 Currents around Iceland with simulated drift from Latragrunn

> Carscadden et al. 2013 https://doi.org/10.1016/j.pocean.2013.05.005

• Time dependent connectivity to Greenland from 2 locations.



## Effects of subpolar gyre





 Weak subpolar gyre: More northward flow of Atlantic waters

Ofstad L (2013) PhD thesis Léon Chafik (2019) https://doi.org/10.17043/chafik-2019-gyre-1 Berx and Payne 2017. https://doi.org/10.5194/essd-9-259-2017, 2017



 Strong subpolar gyre: Restricted northward flow of Atlantic water

### **Time dependent connectivity**





# **Reverse drift trajectories**



- Hatching events can be inferred through backtracking.
- Trajectories calculated to back before conceivable hatching event
- Spawning event found along reverse drift trajectory using age data
- Larval transport pathways become evident

